ISSN: 2297-6485 doi: 10.12924/librello.OF

Organic Farming (OF; ISSN 2297-6485) is a new open access academic journal that publishes articles on advances and innovations in organic agriculture and food production to provide scholars and other groups with relevant and highly topical research in the field.

Organic Farming welcomes contributions in diverse areas related to organic farming and food production, such as soil and plant management, crop breeding, regulation of pests and diseases, protection of soil, water, biodiversity and other resources, livestock health and management, marketing and acceptance of organic products, food quality and processing, policies and regulations.

The articles of Organic Farming will be immediately accessible upon publication and we aim at making this journal a valuable venue for the communication among scientists, but also between researchers, producers, policy makers, traders and consumers of organic products.

Topics covered by this journal include, but are not limited to: agroforestry systems; biodiversity; biological pest and disease control; certification and regulation; compost and manure management; consumer research; crop rotations; ecosystem services; food processing; food quality and safety; green manures; nutrient cycling and run-off; organic energy production; organic farming for food security; plant breeding and genetics; poverty eradication and human development; regulation and policies; resilience and transformations; social acceptance and marketing; soil and water protection; sustainability and ethics of livestock production; sustainable agriculture; tillage and no-till organic farming systems; veterinary aspects of organic livestock production; weed ecology and management; and related topics.

Organic Farming will specially welcome original interdisciplinary and trans-disciplinary contributions.

Latest publications

doi: 10.12924/of2017.03010003 | Volume 3 (2017) | Issue 1
Erin H. Roche 1, * , Ellen B. Mallory 1 and Heather Darby 2
1 University of Maine, School of Food and Agriculture, Orono, ME, USA
2 University of Vermont, Department of Plant and Soil Science, Burlington, VT, USA
* Corresponding author
Views 185
PDF 193
HTML 153
Publication Date: 13 February 2017

Achieving high grain yields and crude protein (CP) standards in organic winter wheat (Triticum aestivum L.) is challenging because ensuring that adequate nitrogen (N) is available at key periods of wheat growth is difficult in organic systems. Split application regimes and in-season N management tests may improve organic production. In field trials conducted over four site-years in Maine and Vermont, USA, N application regimes were analyzed for their effects on organic winter wheat, N uptake, grain yield, and CP. Tiller density and tissue N tests were evaluated as in-season decision tools. Eight treatments arranged in a non-factorial design differed in terms of N application timing (pre-plant (PP), topdress at tillering (T1), and topdress at pre-stem extension (T2)) and N rate. Treatments were: (1) an untreated check, (2) pre-plant N at a low rate of 78 kg N ha−1 (PPL), (3) pre-plant N at a high rate of 117 or 157 kg N ha−1 (PPH), (4) T178, (5) PPL + T139, (6) PPL + T239, (7) PPH + T239, and (8) PPL + T139 +T239. Responses to N treatments were variable among site-years, however some common results were identified. The PP-only treatments increased grain yields more than they increased CP. The T178 and PPH + T239 treatments were the most effective at increasing yield and CP, compared with the PP-only treatments. Tiller density and tissue N tests were good predictors of grain yield (r = 0.52, p < 0.001) and CP (r = 0.75, p < 0.001) respectively. Future work should test in-season decision tools using a wider range of tiller densities, and topdress N rates against tissue N measurements.

doi: 10.12924/of2017.03010001 | Volume 3 (2017) | Issue 1
Thomas F. Döring 1, 2
1 Editor-in-Chief of Organic Farming, Librello, Basel, Switzerland
2 Faculty of Life Science, Humboldt Universität zu Berlin, Berlin, Germany
Views 230
PDF 234
HTML 164
Publication Date: 13 February 2017
Abstract: Opening the third volume of this journal provides a re- newed opportunity to reflect on the current developments within the world of organic farming. As the most recent international data show, the organic sector continues to grow on a global scale, in terms of organic area, mar- ket share and number of producers [1]. Yet, for organic farming—as for any movement—expansion always en- tails the difficulty of maintaining identity. Achieving both, i.e. becoming ‘bigger’ and ‘better’, is the explicit goal of Organic 3.0 [2], the international initiative to advance and evolve organic farming. Launched in 2014, Organic 3.0 is now gaining increasing momentum, e.g. as a key topic at the upcoming Organic World Congress in India this autumn. The Organic 3.0 initiative proposes an am- bitious plan for promoting “a widespread uptake of truly sustainable farming systems” [2]. One of the suggested pathways to achieve the goals of Organic 3.0 is improved and extended research and development.

doi: 10.12924/of2016.02010023 | Volume 2 (2016) | Issue 1
Marco Pautasso 1, * , Anja Vieweger 2 and A. Márcia Barbosa 3
1 Animal and Plant Health Unit, European Food Safety Authority (EFSA), Parma, Italy
2 Organic Research Centre, Elm Farm, Hamstead Marshall, Newbury, UK
3 Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Research Network in Biodiversity and Evolutionary Biology, University of Évora, Portugal
* Corresponding author
Views 1007
PDF 921
HTML 738
Publication Date: 29 June 2016
Abstract: Organic farming adoption is on the rise in many countries, due to the increased awareness of farmers, citizens, governments and other stakeholders of its more sustainable nature. Various studies have investigated the socio-economic drivers (e.g., consumer demand, support measures, agricultural policies) of organic farming adoption, but less attention has been paid to whether biogeographic factors could also be associated with variation in rates of organically managed farms in certain regions within countries. We investigate whether biogeographic factors are associated with variation in the proportion of land under organic farming in French departments. The proportion of land under organic farming increased with decreasing latitude and increasing department area. Non-significant factors were number of plant taxa, proportion of Natura 2000 protected areas, connectivity, longitude, altitude and department population. These results were robust to controlling for spatial autocorrelation. Larger and southern French departments tend to have a greater adoption of organic farming, possibly because of the more extensive nature of agriculture in such regions. Biogeographic factors have been relatively neglected in investigations of the drivers of organic farming adoption, but may have an important explanatory value.

doi: 10.12924/of2016.02010021 | Volume 2 (2016) | Issue 1
Charles Francis 1, 2
1 Department of Agronomy & Horticulture, University of Nebraska - Lincoln, Lincoln, NE, USA
2 Plant Sciences Department, Norwegian University of Life Sciences, Ås, Norway
Views 1474
PDF 993
HTML 642
Publication Date: 31 May 2016
Abstract: Organic Struggle chronicles the challenges encountered by innovators in a growing segment of the U.S. food pro- duction and marketing system. Practiced for millenia by farmers before the introduction of chemical fertilizers and pesticides, and first developed more formally in Europe, organic farming practices began to gain prominence in the U.S. only in the 1950s. Far more than a system for pro- ducing food, this strategy has become a focus for those supporting healthy and pesticide-free products, for some who embrace the organic system as a food movement, and by many who disagree with the current domination of the country’s food industry by large farms and a small num- ber of multinational corporations. Within the organic sector there is debate between those who favor a system primar- ily run by local farmers who sell through small markets and CSAs, and others who insist that the ‘Big-Organic’ seg- ment that now sells more than half of all organic food is doing more to help the environment in the large picture. Author Brian Obach describes this ongoing struggle.

doi: 10.12924/of2016.02010017 | Volume 2 (2016) | Issue 1
Bruce Kenneth Kirchoff
Department of Biology, University of North Carolina at Greensboro Greensboro, NC, USA
Views 905
PDF 841
HTML 559
Publication Date: 27 April 2016
Abstract: An experimental test of a biodynamic agriculture method of weed suppression was carried out in growth chambers to establish the feasibility of the method as a preliminary to field trials. Four generations of Brassica rapa plants were used in a randomized block design. Treated flats received ashed seeds prepared according to biodynamic indications. Seed weight and counts were measured at the end of each generation, and germination of the control and experimental seed was investigated at the end of generation four. The biodynamic seed peppers, created and applied as described here, had no effect on seed production or viability, and did not effectively inhibit reproduction of the targeted species over the course of four consecutive treatments.

View more publications...

ISSN: 2297-6485
2012 - 2017 Librello, Switzerland.