ISSN: 2297-6485 doi: 10.12924/librello.OF

Organic Farming (OF; ISSN 2297-6485) is a new open access academic journal that publishes articles on advances and innovations in organic agriculture and food production to provide scholars and other groups with relevant and highly topical research in the field.

Organic Farming welcomes contributions in diverse areas related to organic farming and food production, such as soil and plant management, crop breeding, regulation of pests and diseases, protection of soil, water, biodiversity and other resources, livestock health and management, marketing and acceptance of organic products, food quality and processing, policies and regulations.

The articles of Organic Farming will be immediately accessible upon publication and we aim at making this journal a valuable venue for the communication among scientists, but also between researchers, producers, policy makers, traders and consumers of organic products.

Topics covered by this journal include, but are not limited to: agroforestry systems; biodiversity; biological pest and disease control; certification and regulation; compost and manure management; consumer research; crop rotations; ecosystem services; food processing; food quality and safety; green manures; nutrient cycling and run-off; organic energy production; organic farming for food security; plant breeding and genetics; poverty eradication and human development; regulation and policies; resilience and transformations; social acceptance and marketing; soil and water protection; sustainability and ethics of livestock production; sustainable agriculture; tillage and no-till organic farming systems; veterinary aspects of organic livestock production; weed ecology and management; and related topics.

Organic Farming will specially welcome original interdisciplinary and trans-disciplinary contributions.

Latest publications

doi: 10.12924/of2017.03010020 | Volume 3 (2017) | Issue 1
Livia Ortolani 1, 2, * , Riccardo Bocci 2 , Paolo Bàrberi 3 , Sally Howlett 4 and Véronique Chable 5
1 Interdepartmental Centre for Agro-environmental Research "Enrico Avanzi", San Piero a Grado, Italy
2 Associazione Italiana per l'Agricoltura Biologica, Rome, Italy
3 Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
4 Organic Research Centre, Hamstead Marshall, UK
5 INRA Centre Rennes-Le Rheu, Le Rheu, France
* Corresponding author
Views 201
PDF 252
HTML 105
Publication Date: 5 May 2017
Abstract: The “transfer of technology”, typical of a top-down linear process of innovation cannot be used in the new contexts of sustainability, characterised by uncertainty and complexity. There is a need to redefine categories and concepts around which innovation and agricultural policies are built, as those currently in use provide only a partial representation of reality. Innovation paradigms underpinning technological development and public policies design will have a direct impact on decisions regarding which agricultural models will ultimately be supported. Looking at local learning capacity and systems of relations can help to understand the potential to develop innovation within a specific context. This work contributes to the definition of new actors who are developing innovation for sustainability in rural areas. The study focuses on the knowledge systems of farmers who are applying alternative breeding strategies: it uses a network approach to explore the knowledge system in which individual farmers are embedded in order to understand their specific relational features. Three main conclusions emerge from the study: for enhancing the agro-ecological innovation paradigm there is a need to define the ‘innovation broker’, to revise the evaluation system of public research and to integrate innovation and agricultural policies.

doi: 10.12924/of2017.03010016 | Volume 3 (2017) | Issue 1
Patrice A. Marchand
Institut Technique de l'Agriculture Biologique (ITAB), Paris, France
Views 267
PDF 496
HTML 136
Publication Date: 19 April 2017
Abstract: Some of the active substances allowed in organic production are now approved as basic sub- stances under the EU plant protection products regulation. Previously, all organic farming permitted active substances were approved as conventional plant protection products. In accordance with the criteria of Article 23 of the EU regulation (EC) No 1107/2009, basic substances are granted without maximum residue limits and have a good prospect for being included in Annex II of organic farming Regulation (EC) 889/2008. In fact, most of them are already permitted in organic farming. At this stage, it seems desirable to organize applications in order to avoid duplications and to clarify strategy across Europe. This organization should be planned in order to identify corresponding knowledge and data from field experiments, and to further constitute the most crucial issues related to organic production. A work of this nature was initially supported by IFOAM-EU for lecithin, calcium hydroxide and Quassia extract. The Institut Technique de l’Agriculture Biologique (ITAB) was previously engaged in a large-scale approval plan motivated by the continuous demand for the regularization of compounds/substances already in use and has a mandate for testing and approving new compatible substances. Thus, the horsetail extract (Equisetum arvense) was the first approved basic substance and ITAB has obtained 11 of the 15 basic substances approved at the EU level.

doi: 10.12924/of2017.03010003 | Volume 3 (2017) | Issue 1
Erin H. Roche 1, * , Ellen B. Mallory 1 and Heather Darby 2
1 University of Maine, School of Food and Agriculture, Orono, ME, USA
2 University of Vermont, Department of Plant and Soil Science, Burlington, VT, USA
* Corresponding author
Views 303
PDF 360
HTML 233
Publication Date: 13 February 2017

Achieving high grain yields and crude protein (CP) standards in organic winter wheat (Triticum aestivum L.) is challenging because ensuring that adequate nitrogen (N) is available at key periods of wheat growth is difficult in organic systems. Split application regimes and in-season N management tests may improve organic production. In field trials conducted over four site-years in Maine and Vermont, USA, N application regimes were analyzed for their effects on organic winter wheat, N uptake, grain yield, and CP. Tiller density and tissue N tests were evaluated as in-season decision tools. Eight treatments arranged in a non-factorial design differed in terms of N application timing (pre-plant (PP), topdress at tillering (T1), and topdress at pre-stem extension (T2)) and N rate. Treatments were: (1) an untreated check, (2) pre-plant N at a low rate of 78 kg N ha−1 (PPL), (3) pre-plant N at a high rate of 117 or 157 kg N ha−1 (PPH), (4) T178, (5) PPL + T139, (6) PPL + T239, (7) PPH + T239, and (8) PPL + T139 +T239. Responses to N treatments were variable among site-years, however some common results were identified. The PP-only treatments increased grain yields more than they increased CP. The T178 and PPH + T239 treatments were the most effective at increasing yield and CP, compared with the PP-only treatments. Tiller density and tissue N tests were good predictors of grain yield (r = 0.52, p < 0.001) and CP (r = 0.75, p < 0.001) respectively. Future work should test in-season decision tools using a wider range of tiller densities, and topdress N rates against tissue N measurements.

doi: 10.12924/of2017.03010001 | Volume 3 (2017) | Issue 1
Thomas F. Döring 1, 2
1 Editor-in-Chief of Organic Farming, Librello, Basel, Switzerland
2 Faculty of Life Science, Humboldt Universität zu Berlin, Berlin, Germany
Views 399
PDF 411
HTML 243
Publication Date: 13 February 2017
Abstract: Opening the third volume of this journal provides a re- newed opportunity to reflect on the current developments within the world of organic farming. As the most recent international data show, the organic sector continues to grow on a global scale, in terms of organic area, mar- ket share and number of producers [1]. Yet, for organic farming—as for any movement—expansion always en- tails the difficulty of maintaining identity. Achieving both, i.e. becoming ‘bigger’ and ‘better’, is the explicit goal of Organic 3.0 [2], the international initiative to advance and evolve organic farming. Launched in 2014, Organic 3.0 is now gaining increasing momentum, e.g. as a key topic at the upcoming Organic World Congress in India this autumn. The Organic 3.0 initiative proposes an am- bitious plan for promoting “a widespread uptake of truly sustainable farming systems” [2]. One of the suggested pathways to achieve the goals of Organic 3.0 is improved and extended research and development.

doi: 10.12924/of2016.02010023 | Volume 2 (2016) | Issue 1
Marco Pautasso 1, * , Anja Vieweger 2 and A. Márcia Barbosa 3
1 Animal and Plant Health Unit, European Food Safety Authority (EFSA), Parma, Italy
2 Organic Research Centre, Elm Farm, Hamstead Marshall, Newbury, UK
3 Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Research Network in Biodiversity and Evolutionary Biology, University of Évora, Portugal
* Corresponding author
Views 1117
PDF 1050
HTML 827
Publication Date: 29 June 2016
Abstract: Organic farming adoption is on the rise in many countries, due to the increased awareness of farmers, citizens, governments and other stakeholders of its more sustainable nature. Various studies have investigated the socio-economic drivers (e.g., consumer demand, support measures, agricultural policies) of organic farming adoption, but less attention has been paid to whether biogeographic factors could also be associated with variation in rates of organically managed farms in certain regions within countries. We investigate whether biogeographic factors are associated with variation in the proportion of land under organic farming in French departments. The proportion of land under organic farming increased with decreasing latitude and increasing department area. Non-significant factors were number of plant taxa, proportion of Natura 2000 protected areas, connectivity, longitude, altitude and department population. These results were robust to controlling for spatial autocorrelation. Larger and southern French departments tend to have a greater adoption of organic farming, possibly because of the more extensive nature of agriculture in such regions. Biogeographic factors have been relatively neglected in investigations of the drivers of organic farming adoption, but may have an important explanatory value.

View more publications...

ISSN: 2297-6485
2012 - 2017 Librello, Switzerland.